
GLOBAL
EDITION

JavaTM

An Introduction to Problem Solving & Programming

EIGHTH EDITION

Walter Savitch

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include
VideoNotes (step-by-step video tutorials on programming concepts), source code, web
chapters, quizzes, and more. Refer to the preface in the textbook for a detailed list of
resources.

Follow the instructions below to register for the Companion Website for Walter Savitch’s
Java™: An Introduction to Problem Solving and Programming, Eighth Edition,
Global Edition.

1. Go to www.pearsonglobaleditions.com/Savitch
2. Enter the title of your textbook or browse by author name.
3. Click Companion Website.
4. �Click Register and follow the on-screen instructions to create a login name

and password.

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

IMPORTANT:
This prepaid subscription does not include access to Pearson MyLab Programming, which
is available at www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon
activation and is not transferable. If the access code has already been revealed it may no
longer be valid.

For technical support go to https://support.pearson.com/getsupport

ISSIPS-PRANK-BURRY-ENDUE-GABBY-TOUSE

http://www.pearsonglobaleditions.com/Savitch
http://www.myprogramminglab.com
https://support.pearson.com/getsupport

An Introduction to
Problem Solving & Programming

™

Eighth edition

Global edition

This page intentionally left blank

An Introduction to
Problem Solving & Programming

Walter Savitch
University of California, San Diego

Contributor

Kenrick Mock
University of Alaska Anchorage

330 Hudson Street, New York, NY 10013

™ Eighth edition

Global edition

Senior Vice President Courseware Portfolio Management:	 Marcia J. Horton
	 Director, Portfolio Management: Engineering,
	 Computer Science & Global Editions:	 Julian Partridge
	 Portfolio Manager:	 Matt Goldstein
	 Portfolio Management Assistant:	 Kristy Alaura
	 Acquisitions Editor, Global Edition:	 Sourabh Maheshwari
	 Assistant Project Editor, Global Edition:	 Aurko Mitra
	 Field Marketing Manager:	 Demetrius Hall
	 Product Marketing Manager:	 Yvonne Vannatta
	 Managing Producer, ECS and Math:	 Scott Disanno
	 Content Producer:	 Sandra L. Rodriguez
	 Media Production Manager, Global Edition:	 Vikram Kumar
	 Senior Manufacturing Controller, Global Edition:	 Caterina Pellegrino
	 Cover Designer:	 Lumina Datamatics, Inc.
	 Cover Photo:	 Racheal Grazias/Shutterstock

Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9NA
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2019

The right of Walter Savitch to be identified as the author of this work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Java: An Introduction to Problem Solving & Programming, 8th
Edition, ISBN 978-0-13-446203-5 by Walter Savitch, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-24747-9
ISBN 13: 978-1-292-24747-2

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10  9  8  7  6  5  4  3  2  1

Printed and bound by Vivar in Malaysia

Typeset by iEnergizer Aptara®, Ltd.

http://www.pearsonglobaleditions.com

55

Preface for Instructors

Welcome to the eighth edition of Java: An Introduction to Problem Solving &
Programming. This book is designed for a first course in programming and
computer science. It covers programming techniques, as well as the basics of
the Java programming language. It is suitable for courses as short as one
quarter or as long as a full academic year. No previous programming experience
is required, nor is any mathematics, other than a little high school algebra. The
book can also be used for a course designed to teach Java to students who have
already had another programming course, in which case the first few chapters
can be assigned as outside reading.

Changes in This Edition

The following list highlights how this eighth edition differs from the seventh
edition:

■■ Correction of errors and edits for readability.
■■ The material on Java applets has been removed from the printed text but is
available as an online chapter.

■■ With the exception of JOptionPane the graphics supplements have changed
from Swing to JavaFX. The Swing chapters are available online. The JavaFX
material introduces drawing, layout, event handling, and common UI
controls.

■■ Examples of event-driven programming with the event handler in a
separate class, the main application class, an anonymous inner class, and
using lambda functions.

■■ Introduction to the Timeline and Scene Builder.
■■ Five new VideoNotes for a total of seventy seven VideoNotes. These
VideoNotes walk students through the process of both problem solving
and coding to help reinforce key programming concepts. An icon appears
in the margin of the book when a VideoNote is available regarding the
topic covered in the text.

■■ Ten new/revised Programming Projects.

6	 Preface for Instructors

Latest Java Coverage

All of the code in this book has been tested using Oracle’s Java SE Development
Kit (JDK), version 8. Any imported classes are standard and in the Java Class
Library that is part of Java. No additional classes or specialized libraries are
needed.

Flexibility

If you are an instructor, this book adapts to the way you teach, rather than
making you adapt to the book. It does not tightly prescribe the sequence in
which your course must cover topics. You can easily change the order in which
you teach many chapters and sections. The particulars involved in rearranging
material are explained in the dependency chart that follows this preface and in
more detail in the “Prerequisites” section at the start of each chapter.

Early Graphics

Graphics supplement sections in each of the chapters. This gives you the
option of covering graphics and GUI programming from the start of your
course. The graphics supplement sections emphasize GUIs built using JavaFX.
Any time after Chapter 8, you can move on to the supplemental chapters on
GUI programming using Swing (Chapters 13 through 15), which are now on
the Web. Alternatively, you can continue through Chapter 10 with a mix of
graphics and more traditional programming. Instructors who prefer to
postpone the coverage of graphics can postpone or skip the graphics
supplement sections.

Coverage of Problem-Solving and Programming Techniques

This book is designed to teach students basic problem-solving and
programming techniques and is not simply a book about Java syntax. It
contains numerous case studies, programming examples, and programming
tips. In addition, many sections explain important problem-solving and
programming techniques, such as loop design techniques, debugging
techniques, style techniques, abstract data types, and basic object-oriented
programming techniques, including UML, event-driven programming, and
generic programming using type parameters.

Early Introduction to Classes

Any course that really teaches Java must teach classes early, since everything in
Java involves classes. A Java program is a class. The data type for strings of
characters is a class. Even the behavior of the equals operator (==) depends on
whether it is comparing objects from classes or simpler data items. Classes
cannot be avoided, except by means of absurdly long and complicated “magic

	 PREFACE FOR INSTRUCTORS	 7

formulas.” This book introduces classes fairly early. Some exposure to using
classes is given in Chapters 1 and 2. Chapter 5 covers how to define classes. All
of the basic information about classes, including inheritance, is presented by
the end of Chapter 8 (even if you omit Chapter 7). However, some topics
regarding classes, including inheritance, can be postponed until later in the
course.

Although this book introduces classes early, it does not neglect tradition-
al programming techniques, such as top-down design and loop design tech-
niques. These older topics may no longer be glamorous, but they are informa-
tion that all beginning students need.

Generic Programming

Students are introduced to type parameters when they cover lists in Chapter
12. The class ArrayList is presented as an example of how to use a class that
has a type parameter. Students are then shown how to define their own classes
that include a type parameter.

Language Details and Sample Code

This book teaches programming technique, rather than simply the Java
language. However, neither students nor instructors would be satisfied with an
introductory programming course that did not also teach the programming
language. Until you calm students’ fears about language details, it is often
impossible to focus their attention on bigger issues. For this reason, the book
gives complete explanations of Java language features and lots of sample code.
Programs are presented in their entirety, along with sample input and output.
In many cases, in addition to the complete examples in the text, extra complete
examples are available over the Internet.

Self-Test Questions

Self-test questions are spread throughout each chapter. These questions have a
wide range of difficulty levels. Some require only a one-word answer, whereas
others require the reader to write an entire, nontrivial program. Complete
answers for all the self-test questions, including those requiring full programs,
are given at the end of each chapter.

Exercises and Programming Projects

Completely new exercises appear at the end of each chapter. Since only you,
and not your students, will have access to their answers, these exercises are
suitable for homework. Some could be expanded into programming projects.
However, each chapter also contains other programming projects, several of
which are new to this edition.

Support Material

The following support materials are available on the Internet at www
.pearsonglobaleditions.com/Savitch:

For instructors only:
■■ Solutions to most exercises and programming projects
■■ PowerPoint slides

Instructors should click on the registration link and follow instructions to
receive a password. If you encounter any problems, please contact your local
Pearson Sales Representative.

For students:
■■ Source code for programs in the book and for extra examples
■■ VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonglobaleditions.com/Savitch to access the student resources.

Online Practice and Assessment with Pearson MyLab
Programming

Pearson MyLab Programming helps students fully grasp the logic, semantics,
and syntax of programming. Through practice exercises and immediate,
personalized feedback, MyLab Programming improves the programming
competence of beginning students who often struggle with the basic concepts
and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyLab Programming course consists of
hundreds of small practice problems organized around the structure of this text-
book. For students, the system automatically detects errors in the logic and syntax
of their code submissions and offers targeted hints that enable students to figure out
what went wrong—and why. For instructors, a comprehensive gradebook tracks
correct and incorrect answers and stores the code inputted by students for review.

MyLab Programming is offered to users of this book in partnership with
Turing’s Craft, the makers of the CodeLab interactive programming exercise
system. For a full demonstration, to see feedback from instructors and stu-
dents, or to get started using MyLab Programming in your course, visit www.
myprogramminglab.com.

VideoNotes

VideoNotes are designed for teaching students key programming concepts and
techniques. These short step-by-step videos demonstrate how to solve
problems from design through coding. VideoNotes allow for self-placed
instruction with easy navigation including the ability to select, play, rewind,
fast-forward, and stop within each VideoNote exercise.

VideoNote

8	 Preface for Instructors

http://www.pearsonglobaleditions.com/Savitch
http://www.myprogramminglab.com
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/Savitch
http://www.pearsonglobaleditions.com/Savitch

	 Preface for Instructors	 9

Margin icons in your textbook let you know when a VideoNote video is
available for a particular concept or homework problem.

Contact Us

Your comments, suggestions, questions, and corrections are always welcome.
Please e-mail them to savitch.programming.java@gmail.com.

	 PREFACE FOR INSTRUCTORS	 9

mailto:java@gmail.com

10

Preface for Students

This book is designed to teach you the Java programming language and, even
more importantly, to teach you basic programming techniques. It requires no
previous programming experience and no mathematics other than some
simple high school algebra. However, to get the full benefit of the book, you
should have Java available on your computer, so that you can practice with the
examples and techniques given. The latest version of Java is preferable.

If You Have Programmed Before

You need no previous programming experience to use this book. It was
designed for beginners. If you happen to have had experience with some other
programming language, do not assume that Java is the same as the
programming language(s) you are accustomed to using. All languages are
different, and the differences, even if small, are large enough to give you
problems. Browse the first four chapters, reading at least the Recap portions.
By the time you reach Chapter 5, it would be best to read the entire chapter.

If you have programmed before in either C or C++, the transition to Java
can be both comfortable and troublesome. At first glance, Java may seem al-
most the same as C or C++. However, Java is very different from these lan-
guages, and you need to be aware of the differences. Appendix 6 compares Java
and C++ to help you see what the differences are.

Obtaining a Copy of Java

Appendix 1 provides links to sites for downloading Java compilers and
programming environments. For beginners, we recommend Oracle’s Java JDK
for your Java compiler and related software and TextPad or DrJava as a simple
editor environment for writing Java code. When downloading the Java JDK, be
sure to obtain the latest version available.

Support Materials for Students

■■ Source code for programs in the book and for extra examples
■■ Student lab manual
■■ VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonglobaleditions.com/Savitch to access the student resources.

http://www.pearsonglobaleditions.com/Savitch

	 PREFACE FOR STUDENTS	 11

Learning Aids

Each chapter contains several features to help you learn the material:

■■ The opening overview includes a brief table of contents, chapter objectives
and prerequisites, and a paragraph or two about what you will study.

■■ Recaps concisely summarize major aspects of Java syntax and other
important concepts.

■■ FAQs, or “frequently asked questions,” answer questions that other
students have asked.

■■ Remembers highlight important ideas you should keep in mind.
■■ Programming Tips suggest ways to improve your programming skills.
■■ Gotchas identify potential mistakes you could make—and should avoid—
while programming.

■■ Asides provide short commentaries on relevant issues.
■■ Self-Test Questions test your knowledge throughout, with answers given at
the end of each chapter. One of the best ways to practice what you are
learning is to do the self-test questions before you look at the answers.

■■ A summary of important concepts appears at the end of each chapter.

Online Practice with Pearson MyLab Programming

A self-study and practice tool, a MyLab Programming course consists of
hundreds of small practice problems organized around the structure of this
textbook. The system automatically detects errors in the logic and syntax of
your code submissions and offers targeted hints that enable you to figure out
what went wrong—and why. Visit www.myprogramminglab.com for more
information.

VideoNotes

These short step-by-step videos demonstrate how to solve problems from
design through coding. VideoNotes allow for self-placed instruction with easy
navigation including the ability to select, play, rewind, fast-forward, and stop
within each VideoNote exercise. Margin icons in your textbook let you know
when a VideoNote video is available for a particular concept or homework
problem.

This Text Is Also a Reference Book

In addition to using this book as a textbook, you can and should use it as a
reference. When you need to check a point that you have forgotten or that you
hear mentioned by somebody but have not yet learned yourself, just look in
the index. Many index entries give a page number for a “recap.” Turn to that
page. It will contain a short, highlighted entry giving all the essential points on

VideoNote

http://www.myprogramminglab.com

12	 PREFACE FOR STUDENTS

that topic. You can do this to check details of the Java language as well as
details on programming techniques.

Recap sections in every chapter give you a quick summary of the main
points in that chapter. Also, a summary of important concepts appears at the
end of each chapter. You can use these features to review the chapter or to
check details of the Java language.

This page intentionally left blank

Acknowledgments

We thank the many people who have made this eighth edition possible,
including everyone who has contributed to the first seven editions. We begin
by recognizing and thanking the people involved in the development of this
new edition. The comments and suggestions of the following reviewers were
invaluable and are greatly appreciated. In alphabetical order, they are:

Christopher Crick—Oklahoma State University
Christopher Plaue—University of Georgia
Frank Moore—University of Alaska Anchorage
Frank Witmer—University of Alaska Anchorage
Greg Gagne—Westminster College
Helen Hu—Westminster College
Paul Bladek—Edmonds Community College, Washington
Paul LaFollette—Temple University
Pei Wang—Temple University
Richard Cassoni—Palomar College
Walter Pistone—Palomar College

Many other reviewers took the time to read drafts of earlier editions of the book.
Their advice continues to benefit this new edition. Thank you once again to:

Adel Elmaghraby—University of Louisville
Alan Saleski—Loyola University Chicago
Anthony Larrain—DePaul University
Arijit Sengupta—Raj Soin College of Business, Wright State University
Asa Ben-Hur—Colorado State University
Ashraful A. Chowdhury—Georgia Perimeter College
Billie Goldstein—Temple University
Blayne Mayfield—Oklahoma State University
Boyd Trolinger—Butte College
Charles Hoot—Oklahoma City University
Chris Hoffmann—University of Massachusetts, Amherst
Dan Adrian German—Indiana University
Dennis Brylow—Marquette University
Dolly Samson—Hawaii Pacific University
Donald E. Smith—Rutgers University
Drew McDermott—Yale University
Ed Gellenbeck—Central Washington University
Faye Tadayon-Navabi—Arizona State University
Gerald Baumgartner—Louisiana State University
Gerald H. Meyer—LaGuardia Community College
Gobi Gopinath—Suffolk County Community College

15

16	AC KNOWLEDGMENTS

Gopal Gupta—University of Texas, Dallas
H. E. Dunsmore—Purdue University, Lafayette
Helen H. Hu—Westminster College
Howard Straubing—Boston College
James Roberts—Carnegie Mellon University
Jim Buffenbarger—Boise State University
Joan Boone—University of North Carolina at Chapel Hill
John Motil—California State University, Northridge
Ken Slonneger—University of Iowa
Laird Dornan—Sun Microsystems, Inc.
Le Gruenwald—University of Oklahoma
Lily Hou—Carnegie Mellon University
Liuba Shrira—Brandeis University
Martin Chetlen—Moorpark College
Mary Elaine Califf—Illinois State University
Michael Clancy—University of California, Berkeley
Michael Litman—Western Illinois University
Michael Long—California State University
Michael Olan—Richard Stockton College of New Jersey
Michal Young—University of Oregon
Michele Kleckner—Elon University
Nan C. Schaller—Rochester Institute of Technology
Peter Spoerri—Fairfield University
Ping-Chu Chu—Fayetteville State University
Prasun Dewan—University of North Carolina, Chapel Hill
Ricci Heishman—North Virginia Community College
Richard A. Johnson—Missouri State University
Richard Ord—University of California, San Diego
Richard Whitehouse—Arizona State University
Robert Herrmann—Sun Microsystems, Inc., Java Soft
Robert Holloway—University of Wisconsin, Madison
Robert P. Burton—Brigham Young University
Rob Kelly—State University of New York at Stony Brook
Ryan Shoemaker—Sun Microsystems, Inc.
Stan Kwasny—Washington University
Stephen F. Weiss—University of North Carolina, Chapel Hill
Steven Cater—Kettering University
Subramanian Vijayarangam—University of Massachusetts, Lowell
Tammy VanDeGrift—University of Portland
Thomas Cortina—Carnegie Mellon University
Thomas VanDrunen—Wheaton College
Y. Annie Liu—State University of New York at Stony Brook

	AC KNOWLEDGMENTS	 17

We thank Frank Carrano for his revision of the fifth edition of this
textbook. Last but not least, we thank the many students in classes at the
University of California, San Diego (UCSD), who were kind enough to help
correct preliminary versions of this text, as well as the instructors who class-
tested these drafts. In particular, we extend a special thanks to Carole McNamee
of California State University, Sacramento, and to Paul Kube of UCSD. These
student comments and the detailed feedback and class testing of earlier
editions of the book were a tremendous help in shaping the final book.

W. S.
K. M.

Acknowledgments for
the Global Edition

Pearson would like to thank and acknowledge the following people for their
contributions to this Global Edition.

Contributors

Komal Arora

Reviewers

Arup Bhattacharya—RCC Institute of Technology
Ajay Mittal—University Institute of Engineering and Technology
Khyat Sharma

18

This chart shows the prerequisites for the chapters in the book. If there is a line between two
boxes, the material in the higher box should be covered before the material in the lower box.
Minor variations to this chart are discussed in the “Prerequisites” section at the start of each
chapter. These variations usually provide more, rather than less, flexibility than what is shown on
the chart.

Dependency Chart

* Note that some sections of these
chapters can be covered sooner.
Those sections are given in this chart.
** These chapters contain sections
that can be covered sooner. See the
chapter’s “Prerequisites” section for
full details.
† Online chapter

Chapter 1 Introduction

Chapter 2
Primitive Types, Strings

Chapter 3
Flow of Control: Branching

Chapter 4
Flow of Control: Loops

Section 7.1
Array Basics

Chapter 7*
Arrays

Chapter 11**
Recursion

Chapter 8**
Inheritance

Chapter 13**,†
Basic Swing

Chapter 14†
Applets

Chapter 15†
More Swing

Chapter 9*
Exceptions

Section 9.1
Exception Basics

Section 10.1
Overview of Files

Section 10.2
Text Files

Section 10.3
Any Files

Section 10.4
Binary Files

Section 10.5
File I/O for Objects

Section 10.6
Network Communi-
cation with Streams

Chapter 12**
Data Structures, Generics

Chapter 5 and 6
Classes and Methods

20

Recaps
Summarize Java syntax and other
important concepts.

Remembers
Highlight important ideas that
students should keep in mind.

Features of This Text

 1.1 Computer Basics 41

Recall that main memory holds the current program and much of its data.
Auxiliary memory is used to hold data in a more or less permanent form.
Auxiliary memory is also divided into bytes, but these bytes are grouped into
much larger units known as files. A file can contain almost any sort of data,
such as a program, an essay, a list of numbers, or a picture, each in an encoded
form. For example, when you write a Java program, you will store the program
in a file that will typically reside in some kind of disk storage. When you use
the program, the contents of the program file are copied from auxiliary
memory to main memory.

You name each file and can organize groups of files into directories, or
folders. Folder and directory are two names for the same thing. Some computer
systems use one name, and some use the other.

FAQ1 Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.

There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is
almost universally followed.

1 FAQ stands for “frequently asked question.”

RECAP Bytes and Memory Locations

A computer’s main memory is divided into numbered units called bytes.
The number of a byte is called its address. Each byte can hold eight
binary digits, or bits, each of which is either 0 or 1. To store a piece of
data that is too large to fit into a single byte, the computer uses several
adjacent bytes. These adjacent bytes are thought of as a single, larger
memory location whose address is the address of the first of the adjacent
bytes.

A file is a group
of bytes stored in
auxiliary memory

A directory, or
folder, contains
groups of files

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 41 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

 2.1 Variables and Expressions 89

Data Types

As you have learned, a data type specifies a set of values and their operations.
In fact, the values have a particular data type because they are stored in memory
in the same format and have the same operations defined for them.

RECAP Variable Declarations

In a Java program, you must declare a variable before it can be used.
A variable declaration has the following form:

SYNTAX

Type Variable_1, Variable_2, . . .;

EXAMPLES

int styleNumber, numberOfChecks, numberOfDeposits;
double amount, interestRate;
char answer;

REMEMBER Syntactic Variables

When you see something in this book like Type, Variable_1, or Variable_2
used to describe Java syntax, these words do not literally appear in your
Java code. They are syntactic variables, which are a kind of blank that you
fill in with something from the category that they describe. For example,
Type can be replaced by int, double, char, or any other type name.
Variable_1 and Variable_2 can each be replaced by any variable name.

Java has two main kinds of data types: class types and primitive types. As
the name implies, a class type is a data type for objects of a class. Since a class
is like a blueprint for objects, the class specifies how the values of its type are
stored and defines the possible operations on them. As we implied in the
previous chapter, a class type has the same name as the class. For example,
quoted strings such as "Java is fun" are values of the class type String,
which is discussed later in this chapter.

Variables of a primitive type are simpler than objects (values of a class
type), which have both data and methods. A value of a primitive type is an
indecomposable value, such as a single number or a single letter. The types
int, double, and char are examples of primitive types.

A data type
specifies a set of
values and
operations

Class types and
primitive types

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M02_SAVI7472_08_GE_C02.indd Page 89 29/05/18 7:04 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100/Global%20crx.

 2.1 Variables and Expressions 95

■ PROGRAMMING TIP Initialize Variables

A variable that has been declared, but that has not yet been given a value by an
assignment statement (or in some other way), is said to be uninitialized. If
the variable is a variable of a class type, it literally has no value. If the variable
has a primitive type, it likely has some default value. However, your program
will be clearer if you explicitly give the variable a value, even if you are simply
reassigning the default value. (The exact details on default values have been
known to change and should not be counted on.)

One easy way to ensure that you do not have an uninitialized variable is to
initialize it within the declaration. Simply combine the declaration and an
assignment statement, as in the following examples:

int count = 0;
double taxRate = 0.075;
char grade = 'A';
int balance = 1000, newBalance;

Note that you can initialize some variables and not initialize others in a
declaration.

Sometimes the compiler may complain that you have failed to initialize a
variable. In most cases, that will indeed be true. Occasionally, though, the
compiler is mistaken in giving this advice. However, the compiler will not
compile your program until you convince it that the variable in question is
initialized. To make the compiler happy, initialize the variable when you
declare it, even if the variable will be given another value before it is used for
anything. In such cases, you cannot argue with the compiler. ■

RECAP Assignment Statements Involving Primitive Types

An assignment statement that has a variable of a primitive type on
the left side of the equal sign causes the following action: First, the
expression on the right side of the equal sign is evaluated, and then the
variable on the left side of the equal sign is set to this value.

SYNTAX

Variable = Expression;

EXAMPLE

score = goals – errors;
interest = rate * balance;
number = number + 5;

You can initialize
a variable when
you declare it

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M02_SAVI7472_08_GE_C02.indd Page 95 29/05/18 7:04 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100/Global%20crx.

Programming Tips
Give students helpful advice about
programming in Java.

FAQs
Provide students answers to frequently
asked questions within the context of
the chapter.

64 CHAPTER 1 / Introduction to Computers and Java

will not give you any error messages. For this reason, logic errors are the
hardest kind of error to locate.

GOTCHA Coping with “Gotchas”

Any programming language has details that can trip you up in ways that are
surprising or hard to deal with. These sorts of problems are often called pitfalls,
but a more colorful term is gotchas. A gotcha is like a trap waiting to catch you.
When you get caught in the trap, the trap has “got you” or, as it is more
commonly pronounced, “gotcha.”

In this book, we have “Gotcha” sections like this one that warn you about
many of the most common pitfalls and tell you how to avoid them or cope
with them. ■

GOTCHA Hidden Errors

Just because your program compiles and runs without any errors and even
produces reasonable-looking output does not mean that your program is correct.
You should always run your program with some test data that gives predictable
output. To do this, choose some data for which you can compute the correct
results, either by using pencil and paper, by looking up the answer, or by some
other means. Even this testing does not guarantee that your program is correct, but
the more testing you do, the more confidence you can have in your program. ■

SELF-TEST QUESTIONS

29. What is a syntax error?

30. What is a logic error?

31. What kinds of errors are likely to produce error messages that will alert
you to the fact that your program contains an error?

32. Suppose you write a program that is supposed to compute the day of the
week (Sunday, Monday, and so forth) on which a given date (like December
1, 2014) will fall. Now suppose that you forget to account for leap years.
Your program will then contain an error. What kind of program error is it?

Software Reuse

When you first start to write programs, you can easily get the impression that
you must create each program entirely from scratch. However, typical software
is not produced this way. Most programs contain some components that

Don’t let a gotcha
get you

VideoNote
Recognizing a hidden error

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 64 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

Gotchas
Identify potential mistakes in
programming that students might
make and should avoid.

 1.1 Computer Basics 41

Recall that main memory holds the current program and much of its data.
Auxiliary memory is used to hold data in a more or less permanent form.
Auxiliary memory is also divided into bytes, but these bytes are grouped into
much larger units known as files. A file can contain almost any sort of data,
such as a program, an essay, a list of numbers, or a picture, each in an encoded
form. For example, when you write a Java program, you will store the program
in a file that will typically reside in some kind of disk storage. When you use
the program, the contents of the program file are copied from auxiliary
memory to main memory.

You name each file and can organize groups of files into directories, or
folders. Folder and directory are two names for the same thing. Some computer
systems use one name, and some use the other.

FAQ1 Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.

There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is
almost universally followed.

1 FAQ stands for “frequently asked question.”

RECAP Bytes and Memory Locations

A computer’s main memory is divided into numbered units called bytes.
The number of a byte is called its address. Each byte can hold eight
binary digits, or bits, each of which is either 0 or 1. To store a piece of
data that is too large to fit into a single byte, the computer uses several
adjacent bytes. These adjacent bytes are thought of as a single, larger
memory location whose address is the address of the first of the adjacent
bytes.

A file is a group
of bytes stored in
auxiliary memory

A directory, or
folder, contains
groups of files

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 41 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

	FEATURES OF THIS TEXT	 21

Case Studies
Take students from problem statement
to algorithm development to Java code.

380 CHAPTER 5 / Defining Classes and Methods

means “if s1 is extinct.” Beginning the name of a boolean-valued method with
a word such as is or has clarifies the meaning of your program. Not only will
others benefit from this naming convention, you likely will make fewer errors
while writing the program. ■

SELF-TEST QUESTIONS

24. What is a reference type? Are class types reference types? Are primitive
types, such as int, reference types?

25. When comparing two quantities of a class type to see whether they are
“equal,” should you use == or the method equals?

26. When comparing two quantities of type int to see whether they are
“equal,” should you use == or the method equals ?

27. Write a method definition for a method called isGrowthRateLargerThan
that could be added to the class Species in Listing 5.19. This method has
one argument of type Species. The method returns true if the receiving
object has a larger growth rate than the growth rate of the argument;
otherwise, it returns false.

CASE STUDY Unit Testing
So far we’ve tested our programs by running them, typing in some input, and
visually checking the results to see if the output is what we expected. This is
fine for small programs but is generally insufficient for large programs. In a
large program there are usually so many combinations of interacting inputs
that it would take too much time to manually verify the correct result for all
inputs. Additionally, it is possible that code changes result in unintended side
effects. For example, a fix for one error might introduce a different error. One
way to attack this problem is to write unit tests. Unit testing is a methodology
in which the programmer tests the correctness of individual units of code. A
unit is often a method but it could be a class or other group of code.

The collection of unit tests becomes the test suite. Each test is generally
automated so that human input is not required. Automation is important
because it is desirable to have tests that run often and quickly. This makes it
possible to run the tests repeatedly, perhaps once a day or every time code is
changed, to make sure that everything is still working. The process of running
tests repeatedly is called regression testing.

Let’s start with a simple test case for the Species class in Listing 5.19. Our
first test might be to verify that the name, initial population, and growth rate
is correctly set in the setSpecies method. We can accomplish this by creating

Unit testing
verifies if
individual units of
code are working
correctly

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M05_SAVI7472_08_GE_C05.indd Page 380 25/05/18 7:50 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

VideoNotes
Step-by-step video solutions to
programming examples and homework
exercises.

110 CHAPTER 2 / Basic Computation

the precedence rules shown in Figure 2.2.3 Operators that are higher on the
list are said to have higher precedence. When the computer is deciding which
of two operations to perform first and the order is not dictated by parentheses,
it begins with the operation having higher precedence and then performs the
one having lower precedence. Some operators have equal precedence, in
which case the order of operations is determined by where the operators
appear in the expression. Binary operators of equal precedence are performed
in left-to-right order. Unary operators of equal precedence are performed in
right-to-left order.

These precedence rules are similar to the rules used in algebra. Except for
some very standard cases, it is best to include the parentheses, even if the
intended order of operations is the one indicated by the precedence rules,
because the parentheses can make the expression clearer to a person reading
the program code. Too many unnecessary parentheses can have the opposite
effect, however. One standard case in which it is normal to omit parentheses is
a multiplication within an addition. Thus,

balance = balance + (interestRate * balance);

would usually be written

balance = balance + interestRate * balance;

Both forms are acceptable, and the two forms have the same meaning.
Figure 2.3 shows some examples of how to write arithmetic expressions in

Java and indicates in color some of the parentheses that you can normally omit.

Specialized Assignment Operators

You can precede the simple assignment operator (=) with an arithmetic
operator, such as +, to produce a kind of special-purpose assignment operator.

Highest Precedence

First: the unary operators +, -, !, ++, and --

Second: the binary arithmetic operators *, /, and %

Third: the binary arithmetic operators + and

Lowest Precedence

FIGURE 2.2 Precedence Rules

3 Figure 2.2 shows all the operators we will use in this chapter. More precedence rules
will be given in Chapter 3.

Precedence rules
and parentheses
determine the
order of
operations

VideoNote
Writing arithmetic
expressions and statements

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M02_SAVI7472_08_GE_C02.indd Page 110 29/05/18 7:04 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100/Global%20crx.

Listings
Show students complete programs with
sample output.

 1.4 Graphics Supplement 67

Due to the historical progression from AWT to Swing to JavaFX, you may
find it helpful to learn a bit about AWT and Swing. Sometimes you will see
references to the older toolkits in the context of a newer toolkit. Swing is
covered in the online chapter.

A Sample JavaFX Application

Listing 1.2 contains a JavaFX application that draws a happy face. Let’s examine
the code by going through it section by section.

import javafx.application.Application;
import javafx.scene.canvas.Canvas;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.stage.Stage;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.shape.ArcType;

public class HappyFace extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) throws Exception
 {
 Group root = new Group();
 Scene scene = new Scene(root);
 Canvas canvas = new Canvas(400, 300);
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.strokeOval(100, 50, 200, 200);
 gc.fillOval(155, 100, 10, 20);
 gc.fillOval(230, 100, 10, 20);
 gc.strokeArc(150, 160, 100, 50, 180, 180, ArcType.OPEN);

 root.getChildren().add(canvas);
 primaryStage.setTitle("HappyFace in JavaFX");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

LISTING 1.2 Drawing a Happy Face

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M01_SAVI7472_08_GE_C01.indd Page 67 24/05/18 8:28 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

22	FEATURES OF THIS TEXT

Programming Examples
Provide more examples of Java
programs that solve specific problems.

Self-Test Questions
Provide students with the opportunity
to practice skills learned in the chapter.
Answers at the end of each chapter
give immediate feedback.

Asides
Give short commentary on relevant
topics.

 5.1 Class and Method Definitions 335

applies to void methods as well: void methods can have formal parameters,
which are handled in exactly the same way as we just described for methods
that return a value.

It is possible, even common, to have more than one formal parameter in a
method definition. In that case, each formal parameter is listed in the method
heading, and each parameter is preceded by a data type. For example, the
following might be the heading of a method definition:

public void doStuff(int n1, int n2, double cost, char code)

Even if more than one parameter has the same
type, each parameter must be preceded by a type
name.

The number of arguments given in a method
invocation must be exactly the same as the number
of formal parameters in the heading of the method
definition. For example, the following might be
an invocation of our hypothetical method
doStuff:

anObject.doStuff(42, 100, 9.99, Z);

As suggested by this example, the correspondence
is one of order and type. The first argument in the
method call is plugged in for the first parameter in
the method definition heading, the second
argument in the method call is plugged in for the
second parameter in the heading of the method
definition, and so forth. Each argument must
match its corresponding parameter in data type,
except for the automatic type conversions that we discussed earlier.

One word of warning: Parameters of a class type behave differently from
parameters of a primitive type. We will discuss parameters of a class type later
in this chapter.

parameter of a primitive type—such as int, double, or char—is a local
variable.

When a method is invoked, each parameter is initialized to the value
of the corresponding argument in the method invocation. This type of
substitution is known as the call-by-value parameter mechanism. The
argument in a method invocation can be a literal constant, such as 2 or ‘A';
a variable; or any expression that yields a value of the appropriate type.

Note that if you use a variable of a primitive type as an argument in a
method invocation, the method invocation cannot change the value of
this argument variable.

ASIDE Use of the Terms Parameter and
Argument

Our use of the terms parameter and
argument is consistent with common usage.
We use parameter to describe the definition
of the data type and variable inside the
header of a method and argument to
describe items passed into a method when it
is invoked. However, people often use these
terms interchangeably. Some people use the
term parameter both for what we call a
formal parameter and for what we call an
argument. Other people use the term
argument both for what we call a formal
parameter and for what we call an
argument. When you see the term parameter
or argument in other books, you must figure
out its exact meaning from the context.

Several
parameters are
possible in a
method

Arguments must
match parameters
in number, order,
and type

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M05_SAVI7472_08_GE_C05.indd Page 335 25/05/18 7:50 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

 4.1 Java Loop Statements 253

Nested Loops

4. Revise the following code so that it uses a while loop instead of a
do-while loop:

Scanner keyboard = new Scanner(System.in);
int number;
do
{
 System.out.println("Enter a whole number:”);
 number = keyboard.nextInt();
 System.out.println("You entered " + number);
} while (number > 0);
System.out.println("number after loop = " + number);

5. What output is produced by the following code?

int count = 0;
while (count < 5)
{
 System.out.println(count);
 count−−;
}
System.out.println("count after loop = " + count);

6. Imagine a program that reads the population of a city using the following
statements:

System.out.print("Enter the population of the city: ");
int population = keyboard.nextInt();

Write a while loop after these statements that ensures that population is
positive. If the user enters a population that is either negative or zero, ask
the user to enter a nonnegative value.

 PROGRAMMING EXAMPLE

The body of a loop can contain any sort of statements. In particular, you can
have a loop statement within the body of a larger loop statement. For example,
the program in Listing 4.4 uses a while loop to compute the average of a list
of nonnegative scores. The program asks the user to enter all the scores
followed by a negative sentinel value to mark the end of the data. This while
loop is placed inside a do-while loop so that the user can repeat the entire
process for another exam, and another, until the user wishes to end the
program.

The body of one
loop can contain
another loop

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M04_SAVI7472_08_GE_C04.indd Page 253 25/05/18 7:25 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

 5.3 Objects and References 389

SELF-TEST QUESTIONS

28. Given the class Species as defined in Listing 5.19, why does the following
program cause an error message?

 public class SpeciesEqualsDemo
 {
 public static void main(String[] args)
 {
 Species s1, s2; s1.
 setSpecies("Klingon ox", 10, 15);
 s2.setSpecies("Klingon ox", 10, 15);
 if (s1 == s2)
 System.out.println("Match with ==.");
 else
 System.out.println("Do Not match with ==.")
 }
}

29. After correcting the program in the previous question, what output does
the program produce?

30. What is the biggest difference between a parameter of a primitive type and
a parameter of a class type?

31. Given the class Species, as defined in Listing 5.19, and the class

public class ExerciseClass
{
 public void mystery(Species s, int m)
 {
 s.setSpecies("Klingon ox", 10, 15);
 m = 42;
 }
}

REMEMBER Differences Between Primitive-Type and
Class-Type Parameters

A method cannot change the value of an argument of a primitive type
that is passed to it. In addition, a method cannot replace an object passed
to it as an argument with another object. On the other hand, a method
can change the values of the instance variables of an argument of a class
type.

VideoNote
Exploring parameters of
class types

GRIDLINE SET IN 1ST-PP TO INDICATE SAFE AREA; TO BE REMOVED AFTER 1ST-PP

M05_SAVI7472_08_GE_C05.indd Page 389 25/05/18 7:50 PM adeshbajaj /DATA/ADESH/Savitch_GE_201_PH03100

23

Brief Contents

Chapter 1	 Introduction to Computers and Java  37

Chapter 2	 Basic Computation  85

Chapter 3	 Flow of Control: Branching  175

Chapter 4	 Flow of Control: Loops  237

Chapter 5	 Defining Classes and Methods  305

Chapter 6	 More About Objects and Methods  419

Chapter 7	 Arrays  513

Chapter 8	 Inheritance, Polymorphism, and Interfaces  621

Chapter 9	 Exception Handling  709

Chapter 10	 Streams, File I/O, and Networking  785

Chapter 11	 Recursion  867

Chapter 12	 Dynamic Data Structures and Generics  919

Appendices
  1	 Getting Java  997

  2	 Running Applets  998

24	 BRIEF CONTENTS

  3	 Protected and Package Modifiers  1000

  4	 The DecimalFormat Class  1001

  5	 Javadoc  1005

  6	 Differences Between C++ and Java  1008

  7	 Unicode Character Codes  1012

  8	 Introduction to Java 8 Functional Programming  1013

  9	 The Iterator Interface  1017

10	 Cloning  1019

11	 Java Reserved Keywords  1023

Credits  1024

Index  1027

The following chapters, along with an index to their contents, are on the
book’s Website:

Chapter 13	 Window Interfaces Using Swing

Chapter 14	 Applets and HTML

Chapter 15	 More Swing

25

Contents

Chapter 1  Introduction to Computers and Java  37

1.1  COMPUTER BASICS  38

Hardware and Memory  39

Programs  42

Programming Languages, Compilers, and Interpreters  43

Java Bytecode  45

Class Loader  47

1.2  A SIP OF JAVA  48

History of the Java Language  48

Applications and Applets  49

A First Java Application Program  50

Writing, Compiling, and Running a Java Program  55

1.3  PROGRAMMING BASICS  57

Object-Oriented Programming  57

Algorithms  61

Testing and Debugging  63

Software Reuse  64

1.4  GRAPHICS SUPPLEMENT  66

A Sample JavaFX Application  67

Size and Position of Figures  70

Drawing Ovals and Circles  71

Drawing Arcs  73

Chapter 2  Basic Computation  85

2.1  VARIABLES AND EXPRESSIONS  86

Variables  87

Data Types  89

26	CONTENTS

Java Identifiers  91

Assignment Statements  93

Simple Input  96

Simple Screen Output  98

Constants  98

Named Constants  100

Assignment Compatibilities  101

Type Casting  103

Arithmetic Operators  106

Parentheses and Precedence Rules  109

Specialized Assignment Operators  110

Case Study: Vending Machine Change  112

Increment and Decrement Operators  117

More About the Increment and Decrement Operators  118

2.2  THE CLASS String  119

String Constants and Variables  119

Concatenation of Strings  120

String Methods  121

String Processing  123

Escape Characters  126

The Unicode Character Set  127

2.3  KEYBOARD AND SCREEN I/O  129

Screen Output  129

Keyboard Input  132

Other Input Delimiters (Optional)  137

Formatted Output with printf (Optional)  139

2.4  DOCUMENTATION AND STYLE  141

Meaningful Variable Names  141

Comments  142

Indentation  145

Using Named Constants  145

2.5  GRAPHICS SUPPLEMENT  147

Style Rules Applied to a JavaFX Application  148

Introducing the Class JOptionPane  150

Reading Input as Other Numeric Types  159

Programming Example: Change-Making Program

  with Windowing I/O 160

	CONTENTS	 27

Chapter 3  Flow of Control: Branching  175

3.1  THE if-else STATEMENT  176

The Basic if-else Statement  177

Boolean Expressions  184

Comparing Strings  189

Nested if-else Statements  194

Multibranch if-else Statements  196

Programming Example: Assigning Letter Grades  198

Case Study: Body Mass Index  201

The Conditional Operator (Optional)  204

The exit Method  204

3.2  THE TYPE boolean  205

Boolean Variables  206

Precedence Rules  207

Input and Output of Boolean Values  210

3.3  THE switch STATEMENT  212

Enumerations  218

3.4  GRAPHICS SUPPLEMENT  219

Specifying a Drawing Color  220

A Dialog Box for a Yes-or-No Question  224

Chapter 4  Flow of Control: Loops  237

4.1  JAVA LOOP STATEMENTS  238

The while Statement  239

The do-while Statement  242

Programming Example: Bug Infestation  247

Programming Example: Nested Loops  253

The for Statement  255

Declaring Variables Within a for Statement  261

Using a Comma in a for Statement (Optional)  262

The for-each Statement  264

4.2  PROGRAMMING WITH LOOPS  264

The Loop Body  265

Initializing Statements  266

Controlling the Number of Loop Iterations  267

Case Study: Using a Boolean Variable to End a Loop  269

Programming Example: Spending Spree  271

The break Statement and continue Statement in Loops

  (Optional)  274

Loop Bugs  277

Tracing Variables  279

Assertion Checks  281

4.3  GRAPHICS SUPPLEMENT  283

Programming Example: A Multiface JavaFX Application  283

Drawing Text  288

Chapter 5  Defining Classes and Methods  305

5.1  CLASS AND METHOD DEFINITIONS  307

Class Files and Separate Compilation  309

Programming Example: Implementing a Dog Class  309

Instance Variables  310

Methods  313

Defining void Methods  316

Defining Methods That Return a Value  317

Programming Example: First Try at Implementing a Species Class  322

The Keyword this  326

Local Variables  328

Blocks  330

Parameters of a Primitive Type  331

5.2  INFORMATION HIDING AND ENCAPSULATION  337

Information Hiding  338

Precondition and Postcondition Comments  338

The public and private Modifiers  340

Programming Example: A Demonstration of Why Instance

  Variables Should Be Private  343

Programming Example: Another Implementation of a Class

  of Rectangles  344

Accessor Methods and Mutator Methods  346

Programming Example: A Purchase Class  350

Methods Calling Methods  354

Encapsulation  360

Automatic Documentation with javadoc  363

UML Class Diagrams  364

28	CONTENTS

5.3  OBJECTS AND REFERENCES  365

Variables of a Class Type  366

Defining an equals Method for a Class  371

Programming Example: A Species Class  375

Boolean-Valued Methods  378

Case Study: Unit Testing  380

Parameters of a Class Type  382

Programming Example: Class-Type Parameters Versus

  Primitive-Type Parameters  386

5.4  GRAPHICS SUPPLEMENT  390

The GraphicsContext Class  390

Programming Example: Multiple Faces, but with a Helping

  Method  394

Adding Labels to a JavaFX Application  398

Chapter 6  More About Objects and Methods  419

6.1  CONSTRUCTORS  421

Defining Constructors  421

Calling Methods from Constructors  430

Calling a Constructor from Other Constructors (Optional)  433

6.2  STATIC VARIABLES AND STATIC METHODS  435

Static Variables  435

Static Methods  436

Dividing the Task of a main Method into Subtasks  443

Adding a main Method to a Class  444

The Math Class  446

Wrapper Classes  449

6.3  WRITING METHODS  455

Case Study: Formatting Output  455

Decomposition  461

Addressing Compiler Concerns  462

Testing Methods  464

6.4  OVERLOADING  466

Overloading Basics  466

Overloading and Automatic Type Conversion  469

Overloading and the Return Type  472

Programming Example: A Class for Money  474

	CONTENTS	 29

6.5  INFORMATION HIDING REVISITED  481

Privacy Leaks  481

6.6  ENUMERATION AS A CLASS  485

6.7  PACKAGES  487

Packages and Importing  488

Package Names and Directories  489

Name Clashes  492

6.8  GRAPHICS SUPPLEMENT  493

Adding Buttons  493

Adding Icons  493

Chapter 7  Arrays  513

7.1  ARRAY BASICS  515

Creating and Accessing Arrays  516

Array Details  519

The Instance Variable length  522

More About Array Indices  525

Initializing Arrays  528

7.2  ARRAYS IN CLASSES AND METHODS  530

Case Study: Sales Report  530

Indexed Variables as Method Arguments  538

Entire Arrays as Arguments to a Method  541

Arguments for the Method main  542

Array Assignment and Equality  543

Methods That Return Arrays  546

7.3  PROGRAMMING WITH ARRAYS AND CLASSES  550

Programming Example: A Specialized List Class  550

Partially Filled Arrays  558

7.4  SORTING AND SEARCHING ARRAYS  560

Selection Sort  560

Other Sorting Algorithms  564

Searching an Array  566

7.5  MULTIDIMENSIONAL ARRAYS  567

Multidimensional-Array Basics  568

Multidimensional-Array Parameters and Returned Values  571

30	CONTENTS

